Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures
نویسندگان
چکیده
Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/μm, a high FEE current density of 1.48 mA/cm(2) and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/μm with 0.21 mA/cm(2) FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission.
منابع مشابه
Conversion of vertically-aligned boron nitride nanowalls to photoluminescent CN compound nanorods: Efficient composition and morphology control via plasma technique
Two-dimensional BN/CN nanomaterials of various composition and morphology were synthesized in N2eH2 plasma by plasma-enhanced hot filament chemical vapor deposition, with B4C used as precursor. The results of field emission scanning electron microscopy, X-ray diffractometer, transmission electron microscopy, micro-Raman and X-ray photoelectron spectroscopy evidence that the hexagonal boron nitr...
متن کاملExciton–polaritons in van der Waals heterostructures embedded in tunable microcavities
Layered materials can be assembled vertically to fabricate a new class of van der Waals heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for control of light-matter coupling. Here, we incorporate molybdenum diselenide/hexagonal boron nitride (MoSe2/hBN) quantum wells in a tunable optical microcav...
متن کاملTemperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures
In-plane and vertically stacked heterostructures of graphene and hexagonal boron nitride (h-BN-G and G/h-BN, respectively) are both recent focuses of graphene research. However, targeted synthesis of either heterostructure remains a challenge. Here, via chemical vapour deposition and using benzoic acid precursor, we have achieved the selective growth of h-BN-G and G/h-BN through a temperature-t...
متن کاملPolycrystalline graphene with single crystalline electronic structure.
We report the scalable growth of aligned graphene and hexagonal boron nitride on commercial copper foils, where each film originates from multiple nucleations yet exhibits a single orientation. Thorough characterization of our graphene reveals uniform crystallographic and electronic structures on length scales ranging from nanometers to tens of centimeters. As we demonstrate with artificial twi...
متن کاملVertically self-ordered orientation of nanocrystalline hexagonal boron nitride thin films for enhanced thermal characteristics.
Vertically self-ordered hexagonal boron nitride (ordered h-BN) is a highly ordered turbostratic BN (t-BN) material similar to hexagonal BN, with its planar structure perpendicularly oriented to the substrate. The ordered h-BN thin films were grown using a High Power Impulse Magnetron Sputtering (HiPIMS) system with a lanthanum hexaboride (LaB6) target reactively sputtered in nitrogen gas. The b...
متن کامل